A New Distribution-Free Approach to Constructing the Confidence Region for Multiple Parameters
نویسندگان
چکیده
Construction of confidence intervals or regions is an important part of statistical inference. The usual approach to constructing a confidence interval for a single parameter or confidence region for two or more parameters requires that the distribution of estimated parameters is known or can be assumed. In reality, the sampling distributions of parameters of biological importance are often unknown or difficult to be characterized. Distribution-free nonparametric resampling methods such as bootstrapping and permutation have been widely used to construct the confidence interval for a single parameter. There are also several parametric (ellipse) and nonparametric (convex hull peeling, bagplot and HPDregionplot) methods available for constructing confidence regions for two or more parameters. However, these methods have some key deficiencies including biased estimation of the true coverage rate, failure to account for the shape of the distribution inherent in the data and difficulty to implement. The purpose of this paper is to develop a new distribution-free method for constructing the confidence region that is based only on a few basic geometrical principles and accounts for the actual shape of the distribution inherent in the real data. The new method is implemented in an R package, distfree.cr/R. The statistical properties of the new method are evaluated and compared with those of the other methods through Monte Carlo simulation. Our new method outperforms the other methods regardless of whether the samples are taken from normal or non-normal bivariate distributions. In addition, the superiority of our method is consistent across different sample sizes and different levels of correlation between the two variables. We also analyze three biological data sets to illustrate the use of our new method for genomics and other biological researches.
منابع مشابه
Distribution Free Confidence Intervals for Quantiles Based on Extreme Order Statistics in a Multi-Sampling Plan
Extended Abstract. Let Xi1 ,..., Xini ,i=1,2,3,....,k be independent random samples from distribution $F^{alpha_i}$، i=1,...,k, where F is an absolutely continuous distribution function and $alpha_i>0$ Also, suppose that these samples are independent. Let Mi,ni and M'i,ni respectively, denote the maximum and minimum of the ith sa...
متن کاملBayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests
A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function. As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...
متن کاملConstructing a Confidence Interval for Quantiles of Normal Distribution, one and Two Population
In this paper, in order to establish a confidence interval (general and shortest) for quantiles of normal distribution in the case of one population, we present a pivotal quantity that has non-central t distribution. In the case of two independent normal populations, we construct a confidence interval for the difference quantiles based on the generalized pivotal quantity and introduce ...
متن کاملRayleigh Confidence Regions based on Record Data
This paper presents exact joint confidence regions for the parameters of the Rayleigh distribution based on record data. By providing some appropriate pivotal quantities, we construct several joint confidence regions for the Rayleigh parameters. These joint confidence regions are useful for constructing confidence regions for functions of the unknown parameters. Applications of the joint confid...
متن کاملConfidence interval for the two-parameter exponentiated Gumbel distribution based on record values
In this paper, we study the estimation problems for the two-parameter exponentiated Gumbel distribution based on lower record values. An exact confidence interval and an exact joint confidence region for the parameters are constructed. A simulation study is conducted to study the performance of the proposed confidence interval and region. Finally, a numerical example with real data set is gi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013